*In the first partially in person scientific
meeting I am attending after the COVID-19 pandemic, the Perspectives
on Scientific Error conference in the Lorentz Center in Leiden, the
organizers asked Eric-Jan Wagenmakers and myself to engage in a discussion about
p-values and Bayes factors. We each gave 15 minute presentations to set up our
arguments, centered around 3 questions: What is the goal of statistical
inference, What is the advantage of your approach in a practical/applied
context, and when do you think the other approach may be applicable?*

**What is the goal of statistical
inference?**

When browsing through the latest issue of Psychological Science, many of the titles of scientific articles make scientific claims. “Parents Fine-Tune Their Speech to Children’s Vocabulary Knowledge”, “Asymmetric Hedonic Contrast: Pain is More Contrast Dependent Than Pleasure”, “Beyond the Shape of Things: Infants Can Be Taught to Generalize Nouns by Objects’ Functions”, “The Bilingual Advantage in Children’s Executive Functioning is Not Related to Language Status: A Meta-Analysis”, or “Response Bias Reflects Individual Differences in Sensory Encoding”. These authors are telling you that if you take away one thing from the work the have been doing, it is a claim that some statistical relationship is present or absent. This approach to science, where researchers collect data to make scientific claims, is extremely common (we discuss this extensively in our preprint “The Epistemic and Pragmatic Function of Dichotomous Claims Based on Statistical Hypothesis Tests” by Uygun- Tunç, Tunç, & Lakens, https://psyarxiv.com/af9by/). It is not the only way to do science – there is purely descriptive work, or estimation, where researchers present data without making any claims beyond the observed data, so there is never a single goal in statistical inferences – but if you browse through scientific journals, you will see that a large percentage of published articles have the goal to make one or more scientific claims.

Claims can be correct or wrong. If scientists used a coin flip as their preferred methodological approach to make scientific claims, they would be right and wrong 50% of the time. This error rate is considered too high to make scientific claims useful, and therefore scientists have developed somewhat more advanced methodological approaches to make claims. One such approach, widely used across scientific fields, is Neyman-Pearson hypothesis testing. If you have performed a statistical power analysis when designing a study, and if you think it would be problematic to p-hack when analyzing the data from your study, you engaged in Neyman-Pearson hypothesis testing. The goal of Neyman-Pearson hypothesis testing is to control the maximum number of incorrect scientific claims the scientific community collectively makes. For example, when authors write “The Bilingual Advantage in Children’s Executive Functioning is Not Related to Language Status: A Meta-Analysis” we could expect a study design where people specified a smallest effect size of interest, and statistically reject the presence of any worthwhile effect of bilingual advantage in children on executive functioning based on language status in an equivalence test. They would make such a claim with a pre-specified maximum Type 1 error rate, or the alpha level, often set to 5%. Formally, authors are saying “We might be wrong, but we claim there is no meaningful effect here, and if all scientists collectively act as if we are correct about claims generated by this methodological procedure, we would be misled no more than alpha% of the time, which we deem acceptable, so let’s for the foreseeable future (until new data emerges that proves us wrong) assume our claim is correct”. Discussion sections are often less formal, and researchers often violate the code of conduct for research integrity by selectively publishing only those results that confirm their predictions, which messes up many of the statistical conclusions we draw in science.

The process of claim making described above does not depend on an individual’s personal beliefs, unlike some Bayesian approaches. As Taper and Lele (2011) write: “It is not that we believe that Bayes’ rule or Bayesian mathematics is flawed, but that from the axiomatic foundational definition of probability Bayesianism is doomed to answer questions irrelevant to science. We do not care what you believe, we barely care what we believe, what we are interested in is what you can show.” This view is strongly based on the idea that the goal of statistical inference is the accumulation of correct scientific claims through methodological procedures that lead to the same claims by all scientists who evaluate the tests of these claims. Incorporating individual priors into statistical inferences, and making claims dependent on their prior belief, does not provide science with a methodological procedure that generates collectively established scientific claims. Bayes factors provide a useful and coherent approach to update individual beliefs, but they are not a useful tool to establish collectively agreed upon scientific claims.

**What is the advantage of your approach
in a practical/applied context? **

A methodological procedure built around a Neyman-Pearson perspective works well in a science where scientists want to make claims, but we want to prevent too many incorrect scientific claims. One attractive property of this methodological approach to make scientific claims is that the scientific community can collectively agree upon the severity with which a claim has been tested. If we design a study with 99.9% power for the smallest effect size of interest and use a 0.1% alpha level, everyone agrees the risk of an erroneous claim is low. If you personally do not like the claim, several options for criticism are possible. First, you can argue that no matter how small the error rate was, errors still occur with their appropriate frequency, no matter how surprised we would be if they occur to us (I am paraphrasing Fisher). Thus, you might want to run two or three replications, until the probability of an error has become too small for the scientific community to consider it sensible to perform additional replication studies based on a cost-benefit analysis. Because it is practically very difficult to reach agreement on cost-benefit analyses, the field often resorts to rules or regulations. Just like we can debate if it is sensible to allow people to drive 138 kilometers per hour on some stretches of road at some time of the day if they have a certain level of driving experience, such discussions are currently too complex to practically implement, and instead, thresholds of 50, 80, 100, and 130 are used (depending on location and time of day). Similarly, scientific organizations decide upon thresholds that certain subfields are expected to use (such as an alpha level of 0.000003 in physics to declare a discovery, or the 2 study rule of the FDA).

Subjective Bayesian approaches can be used in practice to make scientific claims. For example, one can preregister that a claim will be made when a BF > 10 and smaller than 0.1. This is done in practice, for example in Registered Reports in Nature Human Behavior. The problem is that this methodological procedure does not in itself control the rate of erroneous claims. Some researchers have published frequentist analyses of Bayesian methodological decision rules (Note: Leonard Held brought up these Bayesian/Frequentist compromise methods as well – during coffee after our discussion, EJ and I agreed that we like those approaches, as they allow researcher to control frequentist errors, while interpreting the evidential value in the data – it is a win-won solution). This works by determining through simulations which test statistic should be used as a cut-off value to make claims. The process is often a bit laborious, but if you have the expertise and care about evidential interpretations of data, do it.

In practice, an advantage of frequentist approaches is that criticism has to focus on data and the experimental design, which can be resolved in additional experiments. In subjective Bayesian approaches, researchers can ignore the data and the experimental design, and instead waste time criticizing priors. For example, in a comment on Bem (2011) Wagenmakers and colleagues concluded that “We reanalyze Bem’s data with a default Bayesian t test and show that the evidence for psi is weak to nonexistent.” In a response, Bem, Utts, and Johnson stated “We argue that they have incorrectly selected an unrealistic prior distribution for their analysis and that a Bayesian analysis using a more reasonable distribution yields strong evidence in favor of the psi hypothesis.” I strongly expect that most reasonable people would agree more strongly with the prior chosen by Bem and colleagues, than the prior chosen by Wagenmakers and colleagues (Note: In the discussion EJ agreed he in hindsight did not believe the prior in the main paper was the best choice, but noted the supplementary files included a sensitivity analysis that demonstrated the conclusions were robust across a range of priors, and that the analysis by Bem et al combined Bayes factors in a flawed approach). More productively than discussing priors, data collected in direct replications since 2011 consistently lead to claims that there is no precognition effect. As Bem has not been able to succesfully counter the claims based on data collected in these replication studies, we can currently collectively as if Bem’s studies were all Type 1 errors (in part caused due to extensive p-hacking).

**When do you think the other approach may
be applicable?**

** **

Even when, in the approach the science I have described here, Bayesian approaches based on individual beliefs are not useful to make collectively agreed upon scientific claims, all scientists are Bayesians. First, we have to rely on our beliefs when we can not collect sufficient data to repeatedly test a prediction. When data is scarce, we can’t use a methodological procedure that makes claims with low error rates. Second, we can benefit from prior information when we know we can not be wrong. Incorrect priors can mislead, but if we know our priors are correct, even though this might be rare, use them. Finally, use individual beliefs when you are not interested in convincing others, but when you only want guide individual actions where being right or wrong does not impact others. For example, you can use your personal beliefs when you decide which study to run next.

**Conclusion**

In practice, analyses based on p-values and Bayes factors will often agree. Indeed, one of the points of discussion in the rest of the day was how we have bigger problems than the choice between statistical paradigms. A study with a flawed sample size justification or a bad measure is flawed, regardless of how we analyze the data. Yet, a good understanding of the value of the frequentist paradigm is important to be able to push back to problematic developments, such as researchers or journals who ignore the error rates of their claims, leading to rates of scientific claims that are incorrect too often. Furthermore, a discussion of this topic helps us think about whether we actually want to pursue the goals that our statistical tools achieve, and whether we actually want to organize knowledge generation by making scientific claims that others have to accept or criticize (a point we develop further in Uygun- Tunç, Tunç, & Lakens, https://psyarxiv.com/af9by/). Yes, discussions about P-Values and Bayes factors might in practice not have the biggest impact on improving our science, but it is still important and enjoyable to discuss these fundamental questions, and I’d like the thank EJ Wagenmakers and the audience for an extremely pleasant discussion.

Hi all,

ReplyDeleteyou don't have to be a proponent of the Neyman-Pearson approach to use p-values or power. All that is required is that you pit two models against each other: one for the null hypothesis of interest and one for a specific alternative hypothesis. A statistical criterion then gives you p and beta as conditional probabilities under the model assumptions. There is no need to interpret them as long-term error probabilities because there is no need to make inferences past the data and the model. -- So what is my goal of a statistical test? Not to make inferences about future tests or about a platonic "population", but simply to safeguard against chance by comparing models. Thinking of tests more in terms of "evaluation" than of "decision" turns p and beta into useful, standardized measures of data quality, and all the metaphysics of populations, true values, infinite experiments, long term errors and so on (all quite bizarre from an ontological point of view) is out of the window.