A blog on statistics, methods, philosophy of science, and open science. Understanding 20% of statistics will improve 80% of your inferences.

Saturday, August 10, 2019

Requiring high-powered studies from scientists with resource constraints


Underpowered studies make it very difficult to learn something useful from the studies you perform. Low power means you have a high probability of finding non-significant results, even when there is a true effect. Hypothesis tests which high rates of false negatives (concluding there is nothing, when there is something) become a malfunctioning tool. Low power is even more problematic combined with publication bias (shiny app). After repeated warnings over at least half a century, high quality journals are starting to ask authors who rely on hypothesis tests to provide a sample size justification based on statistical power.

The first time researchers use power analysis software, they typically think they are making a mistake, because the sample sizes required to achieve high power for hypothesized effects are much larger than the sample sizes they collected in the past. After double checking their calculations, and realizing the numbers are correct, a common response is that there is no way they are able to collect this number of observations.

Published articles on power analysis rarely tell researchers what they should do if they are hired on a 4 year PhD project where the norm is to perform between 4 to 10 studies that can cost at most 1000 euro each, learn about power analysis, and realize there is absolutely no way they will have the time and resources to perform high-powered studies, given that an effect size estimate from an unbiased registered report suggests the effect they are examining is half as large as they were led to believe based on a published meta-analysis from 2010. Facing a job market that under the best circumstances is a nontransparent marathon for uncertainty-fetishists, the prospect of high quality journals rejecting your work due to a lack of a solid sample size justification is not pleasant.

The reason that published articles do not guide you towards practical solutions for a lack of resources, is that there are no solutions for a lack of resources. Regrettably, the mathematics do not care about how small the participant payment budget is that you have available. This is not to say that you can not improve your current practices by reading up on best practices to increase the efficiency of data collection. Let me give you an overview of some things that you should immediately implement if you use hypothesis tests, and data collection is costly.

1) Use directional tests where relevant. Just following statements such as ‘we predict X is larger than Y’ up with a logically consistent test of that claim (e.g., a one-sided t-test) will easily give you an increase of 10% power in any well-designed study. If you feel you need to give effects in both directions a non-zero probability, then at least use lopsided tests.

2) Use sequential analysis whenever possible. It’s like optional stopping, but then without the questionable inflation of the false positive rate. The efficiency gains are so great that, if you complain about the recent push towards larger sample sizes without already having incorporated sequential analyses, I will have a hard time taking you seriously.

3) Increase your alpha level. Oh yes, I am serious. Contrary to what you might believe, the recommendation to use an alpha level of 0.05 was not the sixth of the ten commandments – it is nothing more than, as Fisher calls it, a ‘convenient convention’. As we wrote in our Justify Your Alpha paper as an argument to not require an alpha level of 0.005: “without (1) increased funding, (2) a reward system that values large-scale collaboration and (3) clear recommendations for how to evaluate research with sample size constraints, lowering the significance threshold could adversely affect the breadth of research questions examined.” If you *have* to make a decision, and the data you can feasibly collect is limited, take a moment to think about how problematic Type 1 and Type 2 error rates are, and maybe minimize combined error rates instead of rigidly using a 5% alpha level.

4) Use within designs where possible. Especially when measurements are strongly correlated, this can lead to a substantial increase in power.

5) If you read this blog or follow me on Twitter, you’ll already know about 1-4, so let’s take a look at a very sensible paper by Allison, Allison, Faith, Paultre, & Pi-Sunyer from 1997: Power and money: Designing statistically powerful studies while minimizing financial costs (link). They discuss I) better ways to screen participants for studies where participants need to be screened before participation, II) assigning participants unequally to conditions (if the control condition is much cheaper than the experimental condition, for example), III) using multiple measurements to increase measurement reliability (or use well-validated measures, if I may add), and IV) smart use of (preregistered, I’d recommend) covariates.

6) If you are really brave, you might want to use Bayesian statistics with informed priors, instead of hypothesis tests. Regrettably, almost all approaches to statistical inferences become very limited when the number of observations is small. If you are very confident in your predictions (and your peers agree), incorporating prior information will give you a benefit. For a discussion of the benefits and risks of such an approach, see this paper by van de Schoot and colleagues.

Now if you care about efficiency, you might already have incorporated all these things. There is no way to further improve the statistical power of your tests, and by all plausible estimates of effects sizes you can expect or the smallest effect size you would be interested in, statistical power is low. Now what should you do?

What to do if best practices in study design won’t save you?

The first thing to realize is that you should not look at statistics to save you. There are no secret tricks or magical solutions. Highly informative experiments require a large number of observations. So what should we do then? The solutions below are, regrettably, a lot more work than making a small change to the design of your study. But it is about time we start to take them seriously. This is a list of solutions I see – but there is no doubt more we can/should do, so by all means, let me know your suggestions on twitter or in the comments.

1) Ask for a lot more money in your grant proposals.
Some grant organizations distribute funds to be awarded as a function of how much money is requested. If you need more money to collect informative data, ask for it. Obviously grants are incredibly difficult to get, but if you ask for money, include a budget that acknowledges that data collection is not as cheap as you hoped some years ago. In my experience, psychologists are often asking for much less money to collect data than other scientists. Increasing the requested funds for participant payment by a factor of 10 is often reasonable, given the requirements of journals to provide a solid sample size justification, and the more realistic effect size estimates that are emerging from preregistered studies.

2) Improve management.
If the implicit or explicit goals that you should meet are still the same now as they were 5 years ago, and you did not receive a miraculous increase in money and time to do research, then an update of the evaluation criteria is long overdue. I sincerely hope your manager is capable of this, but some ‘upward management’ might be needed. In the coda of Lakens & Evers (2014) we wrote “All else being equal, a researcher running properly powered studies will clearly contribute more to cumulative science than a researcher running underpowered studies, and if researchers take their science seriously, it should be the former who is rewarded in tenure systems and reward procedures, not the latter.” and “We believe reliable research should be facilitated above all else, and doing so clearly requires an immediate and irrevocable change from current evaluation practices in academia that mainly focus on quantity.” After publishing this paper, and despite the fact I was an ECR on a tenure track, I thought it would be at least principled if I sent this coda to the head of my own department. He replied that the things we wrote made perfect sense, instituted a recommendation to aim for 90% power in studies our department intends to publish, and has since then tried to make sure quality, and not quantity, is used in evaluations within the faculty (as you might have guessed, I am not on the job market, nor do I ever hope to be).

3) Change what is expected from PhD students.
When I did my PhD, there was the assumption that you performed enough research in the 4 years you are employed as a full-time researcher to write a thesis with 3 to 5 empirical chapters (with some chapters having multiple studies). These studies were ideally published, but at least publishable. If we consider it important for PhD students to produce multiple publishable scientific articles during their PhD’s, this will greatly limit the types of research they can do. Instead of evaluating PhD students based on their publications, we can see the PhD as a time where researchers learn skills to become an independent researcher, and evaluate them not based on publishable units, but in terms of clearly identifiable skills. I personally doubt data collection is particularly educational after the 20th participant, and I would probably prefer to  hire a post-doc who had well-developed skills in programming, statistics, and who broadly read the literature, then someone who used that time to collect participant 21 to 200. If we make it easier for PhD students to demonstrate their skills level (which would include at least 1 well written article, I personally think) we can evaluate what they have learned in a more sensible manner than now. Currently, difference in the resources PhD students have at their disposal are a huge confound as we try to judge their skill based on their resume. Researchers at rich universities obviously have more resources – it should not be difficult to develop tools that allow us to judge the skills of people where resources are much less of a confound.

4) Think about the questions we collectively want answered, instead of the questions we can individually answer.
Our society has some serious issues that psychologists can help address. These questions are incredibly complex. I have long lost faith in the idea that a bottom-up organized scientific discipline that rewards individual scientists will manage to generate reliable and useful knowledge that can help to solve these societal issues. For some of these questions we need well-coordinated research lines where hundreds of scholars work together, pool their resources and skills, and collectively pursuit answers to these important questions. And if we are going to limit ourselves in our research to the questions we can answer in our own small labs, these big societal challenges are not going to be solved. Call me a pessimist. There is a reason we resort to forming unions and organizations that have to goal to collectively coordinate what we do. If you greatly dislike team science, don’t worry – there will always be options to make scientific contributions by yourself. But now, there are almost no ways for scientists who want to pursue huge challenges in large well-organized collectives of hundreds or thousands of scholars (for a recent exception that proves my rule by remaining unfunded: see the Psychological Science Accelerator). If you honestly believe your research question is important enough to be answered, then get together with everyone who also thinks so, and pursue answeres collectively. Doing so should, eventually (I know science funders are slow) also be more convincing as you ask for more resources to do the resource (as in point 1).

If you are upset that as a science we lost the blissful ignorance surrounding statistical power, and are requiring researchers to design informative studies, which hits substantially harder in some research fields than in others: I feel your pain. I have argued against universally lower alpha levels for you, and have tried to write accessible statistics papers that make you more efficient without increasing sample sizes. But if you are in a research field where even best practices in designing studies will not allow you to perform informative studies, then you need to accept the statistical reality you are in. I have already written too long a blog post, even though I could keep going on about this. My main suggestions are to ask for more money, get better management, change what we expect from PhD students, and self-organize – but there is much more we can do, so do let me know your top suggestions. This will be one of the many challenges our generation faces, but if we manage to address it, it will lead to a much better science.

1 comment:

  1. Power = people?
    Thomas Schmidt, University of Kaiserslautern, Germany

    There is yet another way to improve your power: Use more trials from the participants you have. Actually power depends on two things: the number of participants in the sample and the reliability of the measurements. However, reliability directly depends on the number of trials. There are several simulation studies that show that both levels (people and trials) are about equally important in determining statistical power. There are many areas of psychology that successfully work with small groups of subjects but massive repetition of measurement -- psychophysics is a good example. In my research, I almost invariably use eight participants and control power entirely by the number of sessions. In my experience, well-trained subjects perform so much more reliably than untrained ones that they can give you high data quality even with limited resources. There is also a convenient, citable name for this approach: Smith & Little (2018) call it "small-N design".

    Apart from statistical power, there is yet another time-honoured concept that is used in engineering: measurement precision. Precision can simply be defined by setting an upper limit to the standard error of the dependent variable -- all you need is a rough idea about the standard deviation. In a recent paper, we included the following passage to justify our sample sizes (Biafora & Schmidt, 2019):

    "In multi-factor repeated-measures designs, statistical power is difficult to predict because too many terms are unknown. Instead, we control measurement precision at the level of individual participants in single conditions. We calculate precision as s/√r (Eisenhart, 1969), where s is a single participant's standard deviation in a given cell of the design and r is the number of repeated measures per cell and subject. With r = 120 and 240 in the priming and prime identification task, respectively, we expect a precision of about 5.5 ms in response times (assuming individual SDs around 60 ms), at most 4.6 percentage points in error rates, and at most 3.2 percentage points in prime identification accuracy (assuming the theoretical maximum SD of .5)."

    ReplyDelete